524Uploads
214k+Views
114k+Downloads
Design, engineering and technology
Entrepreneurial challenge
In this entrepreneurial role-play activity, students will research and create a pitch to sell a remote surgery system.
This is one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3, supporting the teaching in design and technology (DT).
Activity: Researching and pitching the technology for a remote surgery system
This activity tasks students with an exciting entrepreneurial challenge.
Students must role play being a senior engineer who has been tasked with creating a compelling video pitch to sell your custom remote surgery systems to the Faratron Medical Institute.
The system includes a surgeon interface, a communications link, and a patient interface. The Faratron Medical Institute wants answers to critical technical concerns:
Students will review a list of several technical questions from the institute and prepare a video response that addresses at least three of these questions, demonstrating technical solutions and building confidence in remote surgery system. Students can use visuals, props, or a direct presentation style.
Download our activity overview for a detailed lesson plan on our entrepreneurial challenge.
The engineering context
Engineers often need to be able to explain how their innovations work in order to gain backing for their projects, or even to secure funding to build their designs. Entrepreneurial skills can also inspire engineers to invent new things and set up their own start-up companies – which can often lead to exciting breakthroughs in the world of technology.
Suggested learning outcomes
Students will learn how to use research to approach problem solving. They’ll develop their communication skills while learning about how different engineering fields converge to solve complex medical problems.
Download our activity sheet and related teaching resources for free!
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download (including video clips), and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
Please do share your highlights with us @IETeducation.
How to make flowcharts for programming
Write a flowchart program to meet a given design brief
Programming is an essential skill in the 21st century world. From mobile phones and tablet computers, to large ‘fly by wire’ passenger jet aircraft, our everyday lives are shaped by systems that have been programmed. These systems keep us safe, get us to work/school or allow us to communicate with our friends and family.
The work of programmers is all around us. Almost all modern electronic systems and products have been programmed to perform different tasks. Learning how to program has therefore become an essential skill for both product and systems designers.
Activity info, teachers’ notes and curriculum links
An engaging activity which enables students to understand and be able to create flowcharts. This is one of the two main methods of programming (the other being raw code/programming language).
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Download the activity sheets for free!
All activity sheets and supporting resources (including film clips!) are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
You can stream and download the related films by clicking on the appropriate link in the related resources section below.
And please do share your classroom learning highlights with us @IETeducation
Design a new robot that could help people in the future
In this activity, learners will design a new robot that could help people in the future.
Programmable robotic systems are becoming an important part of industrial developments in design and technology. Robots are now being developed that can sense changes in their surroundings and respond accordingly.
As such, this lesson asks students to explore how electronic and mechanical systems can be integrated to create functioning products like a robot.
This lesson can be followed by Programming the robot buggy with the BBC micro:bit, where learners use the micro:bit to develop a robotic buggy that can successfully navigate a maze or path. These resources are part of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3, supporting the teaching in computing and design & technology (D&T).
Activity: Designing a new robot that could help people in the future
Students will first look at existing robots that are used to help people in our Future Robots presentation and then brainstorm how robots could further assist people in the future.
Learners are tasked with designing a robot that’s unique. Their robot must include both electronic (e.g., programmable circuit board) and mechanical (e.g., motors for movement) parts and they students must explain how these systems work together.
They can use our Future Robot Design handout to draw their robots, adding notes explaining how the electronic and mechanical systems function. Students should use technical language and justify their design decisions (explaining input/output placement, materials, construction methods, etc.).
Download our activity overview for a detailed lesson plan on how to design a robot.
The engineering context
Robotics is an ideal topic for teaching about programmable components and embedded intelligence in products. These are key parts of the programme of study for Design and Technology at key stage 3.
It is also an ideal vehicle for using the BBC micro:bit in the classroom and developing the programming skills of learners.
Suggested learning outcomes
Students will be able to design a robot that can help people in the future. They’ll also improve their understanding of how electronic and mechanical systems can be integrated to create functioning products.
Download our activity sheet and related teaching resources
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
Download our classroom lesson plan and presentation for free.
Please do share your highlights with us @IETeducation.
Human robotic arm design
Exploring the movement of a human arm for robotics design
This is an engaging starter activity in which students examine how human arms move. Learners will also discover how this movement can be replicated with a mechanical arm using a smart material. Students can then subsequently use this information to support the design of a robot arm.
This lesson can be followed by 3D modelling, which looks at designing and modelling a 3D robot arm and build a robot arm, which looks at how to make a robot arm with carboard.
It’s one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3, supporting the teaching in science (specifically biology), engineering and design & technology (D&T).
Activity: Exploring the movement of a human arm for robotics design
By examining the movement of their own arms, students will learn how robot arms might be designed and how smart materials can play a role.
Students will first bend their arms and be asked to monitor and describe the mechanics involved (muscles, joints, etc.). They will then consider how this natural bending motion can inspire the design of robot arms. Learns will be introduced to shape memory alloy (SMA) springs, which can be deformed or stretched and then revert back to their original shape when heated (this can be achieved using an electrical current).
Finally, students will be tasked with explaining how SMAs could be used to create movement in a robot arm.
Download our activity overview for a detailed lesson plan on the movement of a human arm.
The engineering context
Robot arms are an example of a programmable system. They are used in a wide variety of industrial applications, ranging from assembling cars to spray-painting products. They’re also used in more dangerous applications for humans such as bomb disposal and repairing space craft as they orbit the earth.
Suggested learning outcomes
Students will learn that a human arm moves due to the contraction of muscles, and they’ll understand that a robot arm can also use contraction or rotation to achieve movement. Finally, they’ll learn that shape memory alloys can revert to a previous shape when heated.
Download our activity sheet and related teaching resources for free!
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
Please do share your highlights with us @IETeducation.
Photovoltaic cells - Investigating circuits
In this solar panel STEM project, students will investigate the photovoltaic effect by manufacturing a simple circuit and integrating it into a product, in this case a version of the popular jitterbug project.
The jitterbug is a device that moves due to vibrations caused by an off-centred mass on a motor’s driveshaft, can be powered by sunlight when connected to a photovoltaic (PV) cell.
Learners will gain insight into the works of sustainable technology by learning about photovoltaic cells (these solar-powered cells are a primary component in renewable energy solutions).
This is one of a set of resources developed to aid the class teaching of the secondary national curriculum, particularly KS3. It is part of the ‘Let there be light’ scheme of work, which involves investigating how photovoltaic cells are used and then using this technology to make a series of electronic circuits of increasing complexity. This could form the basis of a Design and Make Assignment (DMA) project in design and technology (DT), with cross-curricular links with Science.
The engineering context
Understanding how to build a simple circuit is one of the fundamental skills in engineering. It provides the basis for understanding electricity and electronics, which are integral to many areas of engineering - from electrical and electronic engineering to computer engineering and even mechanical and civil engineering.
Furthermore, photovoltaic cells, or solar cells, convert sunlight directly into electricity. This technology plays a key role in renewable energy solutions, which are becoming increasingly important due to the global push towards sustainable living. Understanding how photovoltaic cells work gives students insights into this technology, preparing them for future innovations in the field.
Suggested learning outcomes
Upon completion of this lesson, students should have a comprehensive understanding of how photovoltaic cells work and how they can be integrated into a circuit. They will gain hands-on experience in manufacturing a simple circuit and integrating it into a product. This activity not only deepens their understanding of the photovoltaic effect but also exposes them to the practical side of electronics and product design.
Download our activity sheet and related teaching resources
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download (including the video), and all the documents are fully editable, so you can tailor them to your class’s and your schools’ needs.
Please do share your highlights with us @IETeducation.
How to draw a plan view in maths
Producing a plan view will help children to develop drawing skills, while also introducing concepts such as dimensions, proportion, and scale. All through our fun, hand-on maths activity!
Different types of drawing are used to communicate different types of information. Plan views see a section of an object as projected on a horizontal plane. In effect, a plan view is a 2D section drawing viewed from the top – this is different from a top view, which would see all of the features looking down from above. In the case of a room, for example, a plan view may show tabletops, chairs, doors etc., whereas a top view would also show the legs of the tables, light fittings etc.
Plan views are widely used to show rooms or buildings from above. They may include measurements, furniture, appliances, or anything else necessary to the purpose of the plan. Plan views may be used to see how furniture will fit in a room, for example when designing a new kitchen, to show the builders the layout of a new building, or on estate agent’s literature to give potential buyers an indication of what a house is like.
The lesson will help learners pick up an understanding of the practical uses of these drawings, from planning the layout of a room to presenting quite complex information about buildings.
This is one of a set of resources developed to support the teaching of the primary national curriculum, particularly key stage two (KS2). It has been designed to support the delivery of key topics within maths and design and technology (DT). This could be used as a one-off activity, an extension to maths learning on scale, or linked to other school activities, such as preparing a map for parents evening.
The engineering context
Designers, engineers, and architects need to be able to communicate the details and features of rooms or products to other engineers, manufacturers, and users. This can include sizes, assembly instructions and layouts. Drawings are typically one of the main methods used for explaining this information – they can be found in every area of engineering and manufacturing.
Suggested learning outcomes
Children will learn about the purpose of a plan view drawing and be able to create one for themselves. They will also learn how to use dimensions and scale when drawing.
Download our activity sheet and related teaching resources
All activity worksheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
And please do share your classroom learning highlights with us @IETeducation.
Make an infrared game
In this activity, students will design a fun infrared ‘tag’ game.
It ideally needs to be preceded by our input, process and output activity as students must draw on their earlier work for designing the game.
It’s one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3, supporting the teaching in engineering and design & technology (D&T).
Activity: Designing an infrared ‘tag’ game
Students will design a new version of the classic tag game using their electronics knowledge to create a fun interactive experience.
Learners will review our design brief to design a novelty “tag” game using emitter and detector circuits (which have been tested previously in input, process and output) to indicate when a player is “tagged”. The game needs to be easy to use and playable both indoors and outdoors.
As a class, students will review the key requirements of the brief and discuss these in pairs. They will then draw their design ideas with annotations. From their ideas, they’ll select one design for modelling using 3D CAD software. Finally, they should present their idea to the class for feedback on how it can be improved.
Download our activity overview for a detailed lesson plan on designing a fun infrared tag game.
The engineering context
Infrared technology has been used in the design of all sorts of fun devices, from TV remote controls to Wii remotes, mobile devices, and laser tag games. By understanding how this technology works, learners can start their journey to potential careers in computer games engineering.
Suggested learning outcomes
By the end of this lesson, students will be able to analyse a design brief. They’ll also be able to explain how research findings affect design ides as well as be able to generate ideas for a product. Finally, they’ll be able to produce a 3D CAD model of a design idea.
Download our activity sheet and related teaching resources
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
Download our classroom lesson plan and presentation and please do share your highlights with us @IETeducation.
Communications infrastructure
This activity makes students aware that when they watch TV, or use the phone, there is a huge expensive communications infrastructure that needs to be paid for and maintained.
Living in a highly technological world, where access to information and entertainment is at our fingertips, the Inform and Entertain Me topic is a gateway to engage and introduce students to the principles and technology that form the basis for communication devices that are used in our everyday lives.
It’s one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3, supporting the teaching in science and design & technology (D&T).
Activity: Learning about the infrastructure technology that keeps phones, computers and WiFi working
This activity gives students an understanding of the technological infrastructure that lets mobile phones and other communication devices connect to one another.
Students will first view our infrastructure presentation, which explains the various components needed for communication networks (e.g., cell towers, base stations, cables, etc.). They will then investigate online how mobile phone networks and other communications systems work.
Students must create either a flow chart or a diagram that shows how these networks operate, explaining the key steps involved in the process.
Download our activity overview for a detailed lesson plan on infrastructure.
The engineering context
We need a robust infrastructure network if we’re to connect people and businesses regardless of their location. Engineers must work to ensure fast and dependable data transmission for our TV, radio and internet signals – much of which drives the entertainment that we all enjoy. It also underpins communication and data transfer for much of our essential services besides giving us a comfortable standard of living.
Suggested learning outcomes
In this activity, students will learn about artificial and geostationary satellites and their uses. They’ll make decisions about the use of modern communications technology based on social, environmental, and economic factors.
Download our activity sheet and related teaching resources
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
Download our classroom lesson plan and presentation and please do share your highlights with us @IETeducation.
Killer water
Identifying the ways in which water can be hazardous to human health
This activity focuses on the link between water and health. It encourages students to think about the role of engineers in providing us with healthy water supplies and waste-water disposal systems by exploring the different ways in which water can be hazardous (and even fatal) to human health.
It’s one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3, supporting the teaching in science. The lesson can be accompanied by the Water pollution and Spreading disease activities.
**Activity: Identifying the ways in which water can be hazardous to human **health
This activity gives students a quick, engaging introduction to the very real dangers of unclean water.
It begins with students viewing our DHMO hazard statement presentation, which playfully lists various dangerous properties of…water! Once students realise that DHMO is simply water, they will view our Safe Drinking Water video which reinforces the very real dangers of water.
Students then work in groups to analyse different ways water poses a risk to human health, and the class compiles a list of these hazards for further discussion. Students can also complete our World water quiz worksheet.
Download our activity overview for a detailed lesson plan on the dangers of unclean water.
The engineering context
Engineers play a vital role in making sure that our water is safe to drink.
Water is crucial to human life, but it can also be a killer. Drinking or cooking water contaminated with micro-organisms or chemicals is a leading cause of disease and death across the world. Poor facilities for the disposal of sewage and other waste water can quickly lead to the spread of dangerous diseases.
Lack of efficient drainage systems and flood defences can lead to catastrophic flooding, as has been seen in several different areas of the world in the past few years.
Suggested learning outcomes
Once this lesson is complete students will understand that unclean water is the world’s number one killer. They’ll be able to explain that clean water supplies and effective methods of waste-water disposal are essential for human health as well as be able to state the chemical properties of water.
Download our activity sheet and other teaching resources
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download (including video clips!), and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
Download our classroom lesson plan and presentation below.
Please do share your highlights with us @IETeducation.
CAD design project
Producing a CAD drawing of a design idea
This activity involves using CAD to design a modular product that could be made in batches using the casting process. Students will be tasked with creating a mould that could be used to make this product. The aim of this activity is to design a shape that can be tessellated, have a practical application, and would look aesthetically pleasing as a modular set of products that can lock together.
This project is part of a series of resources designed to challenge the students by requiring them to apply the knowledge and understanding of engineering materials through a ‘batch’ production experience. This activity should be followed by Investigating batch production . Also included in the series are Engineering design processes and Investigating cast products.
It’s one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3, supporting the teaching in engineering and design and technology (D&T).
Activity: Producing a CAD drawing of a design idea
In this activity students will design a modular product that could be made in batches using the casting process and create a mould that could be used to make this product.
Students will be asked to design a set of identical products that interlock (are modular). The products must be suitable for batch production made by casting and be made from PoP (plaster of Paris).
They’ll need to produce sketches of some design ideas and then choose one for modelling using CAD software. Students will next create a card model to test the interlocking feature and aesthetics of their design. After this they can make any necessary adjustments to their CAD drawing, and use use CAD/CAM to create an MDF mould.
The engineering context
Engineers will use CAD design as part of the process of making products. Items that have been designed this way are also ideal for batch production as they can be easily replicated. This links to industrial practices such as quality control, standardisation, and casting manufacture.
Suggested learning outcomes
This activity will teach students to analyse a design brief as well as generate ideas for a tessellated product that is suitable for batch manufacture. Students will also learn how to produce a CAD drawing of a design idea.
Download our activity sheet and other teaching resources
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
Please do share your highlights with us @IETeducation
Investigating batch production
Using the casting process to make a batch of a product
In this activity students will use the casting process to create a small batch of identical products.
The lesson is part of a series of resources designed to challenge students by requiring them to apply the knowledge and understanding of engineering materials through a ‘batch’ production experience. It followed on from our CAD design project . Also included in the series are Engineering design processes and Investigating cast products.
It’s one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3, supporting the teaching in engineering and design and technology (D&T).
Activity: Using the casting process to make a batch of a product
In this activity, students will use a prepared mould to create a small batch of identical products through a casting process.
Students will mix the casting material (like plaster of Paris), pour it into the moulds, and allow the products to dry. Once complete, they will then carefully remove the products from the moulds. Students will need to record the dimensions of each product to identify any variations and explain why these might have occurred…
Download our activity overview for a detailed lesson plan on batch production.
The engineering context
Casting is a commonly used by engineers as a form of batch production, which is way of manufacturing many different forms of goods in an efficient way on a large-scale offering benefit such as mass production and quality control.
Suggested learning outcomes
This lesson will teach students how to carry out a basic batch manufacture of a cast product. At the end of the activity, students will be able to describe the advantages of batch production.
Download our activity sheet and other teaching resources
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
Please do share your highlights with us @IETeducation.
Design and print a model town
With our design and technology KS3 teaching resource lesson plan and template, learners will create a visual answer to a design situation using both sketching and CAD drawing software, followed by 3D printing a physical model.
This is one of a set of teaching resources designed to allow learners to use practical methods to support the delivery of key topics within Design & Technology and Engineering. This activity is based on CAD and 3D printing and provides a straightforward, practical way to introduce these technologies into the curriculum.
This activity could be used as a main lesson activity to reinforce CAD drawing skills or to introduce 3D printing. It could also be used as part of a scheme of work learning about the design process.
Activity:
Learners will decide upon a building to create and its purpose before sketching three draft ideas. They will then select the best features of their ideas before drawing a final design idea. Learners can share their ideas and concepts with peers for constructive feedback and improvement of designs.
Once their designs have been finalised they will use Onshape to produce CAD models of their buildings and then 3D print them to create a town including the work of the whole class.
Tools/supplies needed:
Pencils
Computer access with 3D drawing package (Onshape, Tinkercad, Fusion 360, Solidworks etc)
3D Printer and filament
The engineering context
CAD is a versatile tool used by engineers across various disciplines to conceptualise, design, analyse, and document complex systems and structures. For example, engineers use CAD to design cars and buildings and to carry out virtual testing of aircraft wings.
3D printing in engineering facilitates rapid prototyping, customisation, and the production of complex geometries while reducing material waste and enabling on-demand production.
Suggested learning outcomes
This resource combines design and technology with engineering with the aim that the learners will be able to communicate a design, develop design skills using the Onshape CAD software and be able to 3D print a design idea successfully.
Download our activity sheet and other teaching resources
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
Please do share your highlights with us @IETeducation
Design and make a cookie cutter
In this fun STEM teaching resource learners will discover how to create a 3D model of a basic shape in TinkerCAD and then print it using a 3D printer.
We’ve created this classroom design activity to support the delivery of key topics within design & technology (D&T) and engineering. This teaching resource activity is based on 3D printing and provides a straightforward, practical way to introduce this technology into the curriculum.
This activity introduces the concept of 3D CAD design and some of the basic tools used with CAD software. The software used for the CAD activity is the free and widely used TinkerCAD; however, this could easily be substituted for any other 3D CAD software already available in school.
The activity involves designing a basic shaped cookie cutter, then printing it out using a 3D printer. The guidance given for the printer is generic and may need to be varied depending upon the specific model(s) available in school.
This could be used as a main lesson activity to introduce basic CAD drawing skills or 3D printing. It could also be used as the basis for an integrated scheme of work, where learners subsequently use their cookie cutters to make biscuits, allowing integration with maths (measuring out ingredients) and food technology skills.
Tools/supplies needed:
Computer with TinkerCAD
3D Printer
PLA filament of an appropriate diameter for the equipment available
Optional (for starter): examples of plastic cookie cutters
Follow our step-by-step guide on how to design and make a cookie cutter
Learners will design and make a cookie cutter using CAD and 3D printing.
The engineering context
CAD is a versatile tool used by engineers across various disciplines to conceptualise, design, analyse, and document complex systems and structures. For example, engineers use CAD to design cars and buildings and to carry out virtual testing of aircraft wings.
3D printing is an area of huge growth, with applications ranging from small plastic parts to printing metal bridges in place over rivers!
Suggested learning outcomes
This resource combines design and technology with engineering with the aim that the learners will be able to develop skills in CAD and be able to 3D print a design idea successfully.
Download our activity sheet and other teaching resources
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
Please do share your highlights with us @IETeducation.
Product integration - Design the casing for your food temperature probe
In this activity students will design a prototype for a casing and housing a food temperature probe.
The activity can be used as a follow-on activity from our Micro:bit food temperature probe design project. It’s part of a series of resources which support the use of the BBC micro:bit in design and technology (DT) or computing lessons.
Activity: Designing the casing for a food temperature probe
This activity tasks students with turning a BBC micro:bit food temperature probe into a finished product.
Students will need to consider aesthetics and ergonomics, how it can securely enclose and fit the food temperature probe, and also which materials should be used that are fit for purposes. Students will sketch their casing ideas, adding notes explaining their design choices.
Students can also create a prototype of their design using modelling materials (e.g., card).
Download our activity overview for a detailed lesson plan on product integration.
The engineering context
Integrating programmable systems within products is an important part of the design process when working with electronic products and systems. Not only does the system have to function correctly, the finished product also has to be commercially viable in the sense that it must be cost-efficient to manufacture, and attractive enough for potential customers to want to buy.
Suggested learning outcomes
By the end of this lesson, students will be able to develop a design for a fully integrated electronic product. They’ll also be able to annotate their ideas using technical language.
Download our activity sheet and other teaching resources
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
Download our classroom lesson plan and presentation below.
Please do share your highlights with us @IETeducation
Structural engineering
In this activity students will use case studies to investigate how architectural and building issues can be resolved.
It can accompany our Structural engineering starter and How to design a spaghetti roof structure activities as part of a series of activities that explores structural engineering.
This is one of a set of resources developed to aid the class teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within design and technology (D&T) and engineering.
Activity: Exploring how architectural and building issues can be resolved through real-life case studies
Students will view the design of the O2 arena by watching our Sound design video. They will also investigate the design of Stanstead Airport by viewing our structural engineering presentation. They will look specifically at the requirements of the buildings and the constraints in terms of structural design. They will also explore the design solutions used to overcome potential issues. This will form the stimulus for students to investigate structures in detail. The students will then be asked to explore possible solutions to a given structural design challenges.
Download our activity overview for a detailed lesson plan on structural engineering for free!
The engineering context
Iconic structures don’t just happen by accident. When designing large buildings, there will often be challenges that need problem solving such as eliminating columns for large open spaces. Engineers need structural knowledge to be able to create innovative designs that are safe, functional, and aesthetic.
Suggested learning outcomes
Students will learn how to identify the key features of structural components. They’ll also know how to identify the various pressures a structural element can undergo and then apply their knowledge of structure to design an effective solution to overcome specific issues.
Download our activity sheet and other teaching resources
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download (including the video), and all the documents are fully editable, so you can tailor them to your class’s and your schools’ needs.
You can download our classroom lesson plan below.
Please do share your highlights with us @IETeducation.
Product analysis with the BBC Microbit
Analyse an existing personal alarm system
This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons.
Schools are busy environments and it is easy for learner’s bags to be left unattended, taken by mistake or even stolen. Alarm systems using embedded electronics and programmable components can be developed to protect the property of learners during the school day.
In this unit of learning, learners will research, program and develop a working school bag alarm system using the BBC micro:bit.
Activity info, teachers’ notes and curriculum links
In this activity, learners will carry out an analysis of an existing, commercially available personal alarm system.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
Download the free activity sheet!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation
Testing fitness levels
In this activity students will learn about hypotheses by looking at heart rate data and how the use of computer games affects fitness.
This lesson follows our Wii Fitness activity, which provides students with an opportunity to collect fitness data which they can use as evidence to debate whether people should be encouraged to engage in computer-based sport activities.
This is one of a set of resources developed to aid the class teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within mathematics and science.
Activity: Making hypotheses on how the use of computer games affects fitness
In this activity students will review their results from our Wii Fitness investigation to form a hypothesis on how different activities affect heart rates. Students must consider the validity and size of the data set collected and work through a series of questions to explore if the data is sufficient to confirm their initial hypotheses.
Download our activity overview for a starter lesson plan on hypotheses for free!
The engineering context
Engineering often involves problem-solving, and hypothesis based on initial observations can help engineers quickly define the potential cause of a problem. Hypothesis helps engineers to interpret data and can even guide them towards designing tests to make sure that the correct data is being gathered. This systematic approach can help to quickly validate or refute hypothesis, allowing engineers to find the right solution for the problem at hand.
Suggested learning outcomes
Students will be introduced to hypotheses and know how to create one from using a data set. They’ll also be able to evaluate the suitability and validity of the data collected as well as explain how results and ideas can be changed when we consider other variables.
Download our activity sheet and other teaching resources
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download (including the video), and all the documents are fully editable, so you can tailor them to your class’s and your schools’ needs.
You can download our classroom lesson plan below.
Please do share your highlights with us @IETeducation.
Structural engineering starter
In this activity students will investigate the design of roofs in terms of purpose and structure.
This activities accompanies our Structural engineering and How to design a spaghetti roof structure resources as part of a series of activities that explores structural engineering. The lesson has been designed to either reinforce or extend basic knowledge of structures to students by providing a real-life context. It is not intended to form an introduction to structures.
This is one of a set of resources developed to aid the class teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within design and technology (D&T) and engineering.
Activity: Looking at the style and purpose of different roofs
This activity will introduce students to basic structural concepts by looking at the familiar context of roofs.
Students will start by viewing our Structural engineering starter presentation to discuss the purpose and different styles of roofs. They will next consider how their own roof might be structured. They will then be introduced to key terms relating to structural engineering such as tension, compression, structs and ties to give them context for subsequent engineering activities.
By working through our presentation, students will be asked to identify which structural members are in tension and compression.
Download our activity overview for a starter lesson plan on structural engineering for free!
The engineering context
Ingenious structural engineering has been responsible for many impressive roofs such as the O2 Arena, Stanstead Airport or Beijing National Stadium. Understanding roofs can be a gateway to appreciating the ingenuity behind larger structures like bridges, skyscrapers, and other structures that form our built environment.
Suggested learning outcomes
At the end of this lesson students will be able to identify the key features of a structural component. They’ll also know how to identify the various pressures a structural element can undergo. They will be able to apply their knowledge of structures to a given problem in order to design an effective solution.
Download our activity sheet and other teaching resources
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download (including the video), and all the documents are fully editable, so you can tailor them to your class’s and your schools’ needs.
You can download our classroom lesson plan for free!
Please do share your highlights with us @IETeducation.
How to design a spaghetti roof structure
In this hands-on activity students are challenged with designing and engineering a spaghetti roof structure.
It should follow our Structural engineering starter and Structural engineering as part of a series of activities that explores structural engineering. The lesson has been designed to either reinforce or extend a leaner’s basic knowledge of structures by providing a real-life context. It is not intended to form an introduction to structures.
This is one of a set of resources developed to aid the class teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within design and technology (D&T) and engineering.
Activity: Designing and engineering a spaghetti roof structure
In this fun activity, students will explore structural engineering principles by designing and building a strong, lightweight roof structure using spaghetti. The challenge comes from having to use the smallest amount of spaghetti and glue possible to keep the structure light and strong.
One their spaghetti roof is built, students must identify which areas are in tension and which are in compression so that they decide which parts of their structure need strengthening.
Download our activity overview for a detailed lesson plan on structural engineering and how to design a roof structure for free!
The engineering context
Virtually every building needs a roof. Sometime the function of the room can be simple, it just needs to be strong and light so that it doesn’t fall down. Other times, more ergonomic considerations need to be taken into consideration such as weatherproofing, aesthetics, acoustics, insulation and fire resistance.
Civil engineers must also be able to identify areas of tension and compression in existing structures, such as older buildings or in buildings that are having renovation work done, in order to be able to make recommendations for that will strengthen and support the existing structure.
Suggested learning outcomes
This lesson will teach students how to identify the key features of a structural component. They’ll learn how to identify the various pressures that a structural element can undergo and also be able to apply their knowledge to create solutions to given problems.
Download our activity sheet and other teaching resources
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download (including the video), and all the documents are fully editable, so you can tailor them to your class’s and your schools’ needs.
You can download our classroom lesson plan for free!
Please do share your highlights with us @IETeducation.
Marketing a product
Promoting a product to a particular target user group
This marketing lesson revolves around designing, branding, and marketing a new Nintendo Wii product.
Students will be tasked with promoting a product to a particular user group, honing in on teamwork, creativity, and entrepreneurial skills. Make your pitch’ will provide students with an opportunity to explore and understand their chosen user group in detail through the analysis of a series of audio pitches.
This is one of a set of resources developed to aid the class teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within design and technology (DT).
Activity: Promoting a product to a particular target user group
The activity consists of defining what a pitch is and analysing three radio adverts (pitches) attached in the Audio Radio Pitch (Presentation). The class will identify the unique selling point of the product, the specific user group targeted, and whether they believe the advert is successful, giving reasons for their opinion. Before proceeding to slide 3 of presentation, students will be asked, “What makes an effective pitch?” They will compile a list based on their evaluations of the three radio audio clips. Slide 2 will then be shown for comparison.
The engineering context
From designing a new video game console or inventing an innovative piece of tech, this activity will show students how understanding user needs and preferences is crucial in creating products that people want to buy. This lesson will also highlight the importance of effective communication in the form of product pitches.
Suggested learning outcomes
By the end of this lesson, students should be able to explain why it is crucial to understand what a user wants when designing and marketing a product. They should also be able to define what a ‘pitch’ is and design a ‘pitch’ aimed at a specific user group or client. This understanding will empower them not only to create effective marketing strategies but also to appreciate the importance of user-focused design in product development.
Download our activity sheet for free!
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download (including the video), and all the documents are fully editable, so you can tailor them to your class’s and your schools’ needs.
Please do share your highlights with us @IETeducation.